gpro Training

pro for creating flows and
ation.

Matt Welland

ing Overview

existing flow
Ing runs, debugging
- Creating a flow

 configs: megatest, runconfig
* tests/tasks: testconfig, logpro

- Getting information about runs and tests
 Roadmap

What does Megatest do?

* Run tests or tasks under different contexts with

— one or many sequential steps per task
— dynamic test dependency calculation
— on multiple hosts

— easy to use but powerful iteration

 Comprehensive meta data capture
- task state: RUNNING, COMPLETED

- task status: PASS, FAIL, WARN, CHECK
- host, test run time etc.

Self-checking
Traceable
Immutable
Repeatable
Relocatable
Encapsulated

Deployable

Megatest Goals

ased, decentralized, easy and sustainable automation

Easy to write self-checking tests
environment variables, host OS, etc. captured and recorded.
do not modify or overwrite previously run tests.

results can be easily recreated by running same target again

the test area can be checked out and the tests run anywhere

test run area is self-contained with all inputs and outputs kept

Source files can be checked out and run by anyone

Wisdom is knowing when it is ok to bend or break the rules.

Megatest strives to make it straightforward to do things right but still possible to
get the job done when the rules must be bent. i.e. Megatest is not opinionated.

e dashboard

Dashboard/Test Control Panel

® Megatest dashboard matt:/home /matt/data/megatest/ext-tests
Files Tools

Ciww41.5a
60
> C1v1.60

- browse runs
— filtering

* target

° runname

filter test and items.

* test pattern
 state/status

- launch, remove runs

* test control panel

- Xterm for debug
- view logs
- re-run tests

release %
iteration %

runname %

v1.62 v1.60 v1.60

nn 28 28

wwd1.53 wwdB.da wwa6 63

pass ||

pass ||

pass ||

pass |

PASS.

PASS.

toprun {
testpatt_envvar
testpatt

test2

runcenfig-tests | Ppass | Pass
rollup

rerunclean

listruns-tests.

itemwait

Fullrun

envvars

dependencies |

state/statu er
[pass [waRN [FaiL
[T COMPLETED [T NOT_STARTED

56036da5cd

ab348d3bd6 ab0d1e7633 29908b23ed 2bae63B8e0F

c6c921401e

2755243089

[cHECK
7] RUNNING

[n/a [wAIVED
(7] REMOTEHOSTSTART

[skip

7] LAUNCHED [KiLLED

() DELETED
[KILLREQ

[STUCK/DEAD
[sTuck

(7] ABORT
(7] ARCHIVED

\
— = nnnnnwnwnnn6w6>-=B-B6B6>6»6»H6-=-nB—nBB——

listruns-tests/
test Run Info

iteration 7172

runname ww41.5a
69
2016ww41

st Run Info
na
048920
1.86

Run duration: 1m 8s
Logfile: chk-filt.heml
Top pro d: 23010
Uname

View Log Start Xterm

:

ux 4.4.0-38-generic #57-Ubuntu SMP Tue Sep 6 15:42:33 U

Te:
Testname: listruns-tests Author:
Item path:
Current state:
Current statu:
Test commen
Test id:
Test date:

COMPLETED
PASS

Run Test Clean Test CleanRunExecute

KILLED

T R
T
TN R

Kill All Jobs.

aData
tyardeni
tyardeni

rerunclean

2016 x86_64 x86_64 GNU/Linux

Archive Test Clo

Execute!

KILLREQ

target

run name
run

task/test
iterated task
state

status

Terminology

one or more keys separated by /, used to set context; e.g. OS,
release, architecture, stage (e.g. development, final QA, alpha,
beta) and so forth.

unique name (within a single target grouping) for a run, a
common idiom is to use week and day numbers:
e.gw41.6 (use unix command: date +w%V.%u)

a group of tests run under a single target and run name

a self-contained area with scripts and data to achieve some
testing or automation goal

a single task run multiple times with one or more variables
iterated over a range of values

the state of a test; NOT_STARTED, RUNNING, COMPLETED
etc.

the current status of this test; PASS, FAIL, n/a

Megatest System Overview

* Config files (the source code)

— megatest.config (setup for given area)
- runconfigs.config (context table, targets)
- tests/<testname>/testconfig (test spec)

» database, dynamic state of runs
- megatest.db
* Tools

- megatest (command line), dashboard
(qui), logpro (log file analysis via rules),
and refdb (text based data tables)

h |& less

megétést -manual
e Support contact:

 Web Site:

- (mirror)

mailto:mattrwelland@gmail.com
https://chiselapp.com/user/kiatoa/repository/megatest
https://www.kiatoa.com/fossils/megatest

dashboard

Target and runs filter

‘esk est
RUNTYPE | % wormal wormal
runname |% ww10a

ISyICUn s

tosh/optchicke _

tosh/local

tosh

packages

a “test item”

groups

tosh

accounts

tests filter

CHECK NAIVED! | STUCK/DEAD | nfa

: = PLETED | INCOMPLETE_| LAUNCHED | NOT_STARTED | KILLEDX | DELETEL
Sort | HideEmpky || Refresh

Quit || Monitor

Controls
(debug,
run &
state/status

test control panel

Megatest Run Info TestInfo Test Meta Data

sysname ubuntu Testname: runfirst Author: matt ‘

fsname nfs Item path: b/2 owner: bob

datapath none Current state: COMPLETED Reviewed: 1/1/1965

runname w12.7.15.37_b Currenk status: PASS Tags: first,single meta data
run-id 1 Test comment: This Description:

Test id: 22 .
This test muskt be run before the other

tesks

run info

test info

Remote host and Test Run Info
Hostname: xena
Uname -a: Linux 3.2.0-38-generic-pae #61-Ubuntu SMP Tue Feb 19 12:39:51 UTC 2013 i686 i386 GNU/Linux
Disk free: -2147483648.0 / e
CPU Load: 8.0 E
Run duration: 495 remote hOSt |nf0
Lagfile: wasting_time.html -
Adjions

View Log | Stark Xterm [| Run Test [Clean Test

| Execute!|
Set fields
Comment:| This

STATE: | COMPLETED REMOTEHOSTSTART KILLED KILLREQ

00.0fail

Management

d — from Run Control tab.
line - megatest -run ...
rol panel — [run]->[execute]

* Removing runs

- command line: megatest -remove-runs ...

note: all these commands require the use of additional selector
parameters such as -target, -runname and -testpatt

Task/Test Management

» Killing jobs

- In the gui set status to “KILLREQ” and
the job will be killed.

- Command line using -set-state-status
* Changing state and status of tests

— Use test control panel. E.g. set a test to
PASS after debugging to enable
downstream tests to be run.

* Use -rerun to re-run jobs with given status
- ... -rerun ABORT

t Selectors

n/itempattern

bh

(0}
ous with %/%

vel tests (no items)
* comma separate multiple patterns (OR)

%/, %/alb All toplevel + any items
matching a/b

g information

h runname matching pattern.

— creates an open-document spreadsheet
* Miscellaneous queries

-list-disks

-list-targets

-list-db-targets

lows/Automation

t helpers to get a basic start

ate-megatest-area
ate-test TESTNAME

Config File Syntax

The config file syntax was designed to be:

— familiar, simple and forgiving to syntax mistakes
— easy to understand
— easy to trace where values originated

— expressive enough for complex needs.

Example description of the example

Sections [setup] Variables defined on subsequent lines
will be in the “setup” section

Variables ABC 1 Variable “ABC” will have the value “1”

[] directives [include a.txt] include file “a.txt”, see manual for all
directives

#{ } text #{shell Is $SPWD} replace the #{ ... } with the output of the
substitutions Is SPWD command. Note that newlines
are replaced with spaces.

onfig File Text Substitutions

ubstitutions can be deferred by megatest and executed just
before launching a test but #{ } substitutions are done as each line is read.

[include filename]

[system command]
#{shell command}
#{system command}

#{scheme (schemecode)}
#{getenv VAR}

#{get section var}

#{rget var}

#{mtrah some/path/or/file}

Includes filename. Ignores if filename
does not exist

replaced with output from command
replaced with output from command

replaced with the exit code of
command

replaced with the result of evaluating
(schemecode)

replaced with the value of
environment variable VAR

replaced with the value of var from
section

use runconfig rules to get a variable

Insert the path or file as based at the
run area home

a Megatest Area

files

onfig
.config

ests
- tests/<testname>/testconfig
e Can use the helper “wizards”

megatest -create-megatest-area
megatest -create-test <testname>

megatest.config

[fields]
PLATFORM TEXT
(O] TEXT

[setup]
Adjust max concurrent jobs to limit parallel jobs
max concurrent jobs 50

This is your link path, best to set it and then not change it
linktree #{mtrah linktree}

Job tools control how your jobs are launched
[jobtools]

useshell yes

launcher nbfake

You can override environment variables for all your tests here
[env-override]
EXAMPLE VAR example value

As you run more tests you may need to add additional disks
the names are arbitrary but must be unique

[disks]

diskO #{mtrah runs}

Required Config Files

runconfigs.config

[default]
ALLTESTS see this variable

Your variables here are grouped by targets [SYSTEM/RELEASE]
[SYSTEM val/RELEASE vall]
ANOTHERVAR only defined if target is SYSTEM val/RELEASE val

Example testconfig

testconfig

Add additional steps here. Format is "stepname script"
[ezsteps]

stepl stepl.sh

step2 step2.sh

Test requirements are specified here
[requirements]

waiton setup

priority O

Iteration for your tests are controlled by the items section
[items]
COMPONENT parser datastore transport analyzer

[scripts]
stepl.sh #! /bin/bash
do-stuff-here

[logpro]
stepl ;:;
(expect:error in “LogFileBody” = 0 “No errors” #/err/i)

test meta is a section for storing additional data
on your test

[test meta]

author matt

owner matt

description An example test
tags tagone, tagtwo

reviewed never

How it Works

remote host

megatest -execute

6\0\(\ (system)

megatest -step ...

megatest.db
(sqlite3)

A Day in The Life ..

test control panel
(in background)

matt
09/10/2011, by

HOSTNAME
RUNTYPE

- unname

8 speedu - 4.8.0.1/awful | |

matt/data/ int nktree/ —_—— e]
4.8.0.1/apropos

incremental file 1list 4.8.0.1/"test"

4.8.0.1/"regex-ca |

chicken

4.8.01
WAIVED_| STUCK/DEADL_| n/a
PLETE_ | LAUNCHED_ | N STAR N, KILLED!

12/chi

You may need to add /mfs/pkgs/xena/xena/chicken/4
file can be found in the current directory which should work for setting up to run chickendx

LOGPRO SUMMARY
: Chicken Build End FAIL, count=i
Chicken Build Start FAIL, count=0
OK, coun

C FAIL,
Warning Body expected
Ignore Body , expected of Ignore warning on not found regex, got O
Ignd i (, expected of Ignore scheme files with error in name, got 0 daSh boa rd
Iggghe expected < 0 11-other-files error, got 0
fznore expected < 99 of Ignore (setup-error-handling), got 0
Ignore expected = 1 of Ignore native window driver warning, got 0
Ignore (, expected of Ignore redefinition of imported value bindings, got
(, expected < references to srfi-4-errors, got 0
expected of Ignore references to type-erro got 0
Ignore i (, expected of Ignore references to check-erroi got 0
Ignore i K, expected of Ignore HAVE_STRERROR, got O

logpro output

a [est "checkspace”’

at checks for available space

n “waiton” this test before
running.

* Our test will use this simple script,

NECKSHACE ST
#!/bin/bash -e
freespace="df -k $DIRECTORY | grep S$DIRECTORY | awk '{print $4}'"
if [[Sfreespace -1t SREQUIRED]];then

echo "ERROR: insufficient space on $DIRECTORY"

exit 1
else

echo "There is adequate space on SDIRECTORY"
fi

Note: Files for this example can be found

a [est "checkspace”

create test “checkspace”

linktree runs tests/checkspace
- cd tests/checkspace

— Vi checkspace.sh

- chmod a+x checkspace.sh

— Vi testconfic

Add steps here. Format is "stepname script"
[ezsteps]
checkspace checkspace.sh

Iteration for your tests are controlled by the items section
[itemstable]

DIRECTORY / tmp /opt

REQUIRED 1000000 100000

test “checkspace”

e to analyze your results

(expect:error in "LogFileBody" = 0 "Any error" #/err/1)
(expect:required in "LogFileBody" = 1 "Sucess signature" #/adequate space/)

-- megatest.config
-- megatest.db
-- monitor.db
-- runconfigs.config
-- tests
“-- checkspace
|-- checkspace.logpro
|-- checkspace.sh
“-- testconfig

Ing the “checkspace” Test

r test

From the directory where
‘megatest.config” exists run these

dashbodrOMMands:

megatest -runtests % -target x86/suse10 :runname w'date +%V.%u’

-- checkspace.sh
| |-- megatest.csh
| |-- megatest.sh
| |-- mt_launch.log
| |-- testconfig
| *-- testdat.db
*-- tmp
*-- 1000000
|-- NBFAKE-2013WW13.1_09:57:49
|-- checkspace.html
|-- checkspace.log
|-- checkspace.logpro
|-- checkspace.sh
|-- megatest.csh
|-- megatest.sh
|-- mt_launch.log
|-- testconfig
*-- testdat.db

e” Test Directories

egatest/example/runs/x86/suse10/w13.1/checkspace//opt/100000

egatest/example/runs/x86/suse10/w13.1/checkspace//tmp/1000000

or Run “Flavors”

are inherited by all runs

[some/target]
VARS here inherited in some/target runs

* NB// the last specified definition overrides
prior definitions.

p Tests/Tasks

set of scripts and data
omething or test

e in tests directory

* Test name limitations

— No spaces or special characters
- [@-zA-Z0-9] and “-" are ok.

tconfig file [setup]

ame.sh

cript must exist in the testconfig
directory and be executable

— Output from the script is NOT captured
by Megatest directly

— The script can be an executable or
written in any scripting language

tconfig file [ezsteps]

— The script “script1.sh” will be executed
and its output redirected to the file
step1.log.

- If a logpro file step1.logpro exists it will be
used to process the logfile
step1name.log and generate the
PASS/FAIL/WARN status.

The testconfig file [items]

[items]

VAR1 value11 value12 value13 ...
VARZ2 value21 value22 value23 ...

— This will iterate this test with all possible
combinations of VAR1 and VARZ2 values.

 Results:

— value?
value-
12/va

value

1/va
1/va

ue21, va
ue23, va
ue22, va

ue’
ue

ue

1/va

12/va
12/va

ue22,
ue21i,
ue23 ...

nfig file [itemstable]

1 wvaluel12 ...

value21 value22 ...

— This will iterate over the test with only
aligned value combinations.

 Result:

- value11/value21, value12/value2? ...

NOTE: You can combine items and itemstable but they work independently
and the result may not be what you expect.

The testconfig file [requirements]

[requirements]

waiton <testhame ... >

e this test will not be launched until the
listed tests are COMPLETED and PASS,
WAIVE or SKIP.

jobgroup <groupname>

* this test will be added to the named job
group and the relevant max concurrent
jobs will apply

mode toplevel

* this test will proceed once all it waiton
tests are completed with any status.

onfig file[test meta]

n The description can run to
multiple lines but subsequent lines must be
Indented with spaces.

* tags first,single
* reviewed 09/10/2011, by Matt

test Calls In Tests

e
start or end of a step

-Status

set the state and status of a test
 -setlog logfhame

set the path/filename to the final log
relative to the test directory.

» -set-toplog logfname
set the log for a series of iterated tests

r Megatest calls

ms

mized test create a summary
ally called automatically)

e -m comment

iInsert a comment for this test, can be
used with any of the above calls

* -test-files or -test-paths

Use the database to search for files or
paths in the test run area

atest in-test calls

step stepl :state start :status
stepl.html

Viark a test as completed and trigger a rollup to the
parent test of overall status)

$MT_MEGATEST —-test—-status :state
COMPLETED :status AUTO

* -fest-path

export EZFAILPATH2=\$MT_MEGATEST —-test-paths —-target
SMT TARGET :runname SMT RUNNAME -testpatt
runfirst/a%"

MT_TARGET
MT_RUNNAME
MT_MEGATEST
MT_TEST RUN_DIR
MT_TEST NAME

MT_ITEM_INFO

MT_RUN_AREA_HOM
E

MT_CMDINFO
MT DEBUG_MODE

MT_LINKTREE

Environment Variables

Contains the target for this run
The run name

Full path to megatest executable
The area where the test itself runs
The name of the current test

Data on the iteration

The base area for this regression

Used internally by megatest

Used to propogate debug mode to
underlying megatest calls.

Full path to the link tree, use to find tests

| Features

g or adding tests to a run

Logpro

* Logpro syntax

Logpro uses scheme calls directly and the full
power of scheme is available. However 99% of
logpro rule files will not need anything other than
the base logpro rules.

e Documentation at:

Rule Example Purpose

expect:error (expect:error in “Logf” = 0 “Err desc” #/err1/i) Flags errors matching the pattern err1
expect:ignore (expect:ignore in “Logf’ < 10 “Err desc” #/err2/i) Ignore errors matching the pattern err2
expect:warning (expect:warning in “Logf” = 0 “Desc” #/warn1/i) Lines matching pattern warn1 flagged as warning
expect:required (expect:required in “Logf’ = 1 “Desc” #/reqrd/i) Line matching pattern reqrd must exit in log file
expect:waive (expect:waive in “Logf’ = 0 “Err desc” #/err3/i) Waive error matching pattern err3

expect:value (expect:value in “Logf” 10 1 “Err desc” #/(\d+)/i) The number matched must be 10 +/- 1

trigger (trigger “start” #/Start logfile/) Set trigger “start” on line with “Start logfile” string.

section (section “Logf” “start” “end”) Section Logdf starts at trigger start, ends at end

hook:add (hook:add “err1” “err1.pl #{msg}”) On err1 call the err1.pl script with msg as param

http://www.kiatoa.com/fossils/logpro

ogpro Usage

ogpro
egatest

This test failed and was manually
set to WAIVED in the next run

This test uses diff and logpro to
determine if ok to propagate WAIVED

I - Koni

The WAIVED status was propagated
because the criteria set in testconfig
were all met

Waliver Propagation

3 Megatest dashboard <4=

ropagation

waiver rule type

file to apply rule

logpro applied

set

example rules

G D
@builtin rule is the default if there is no <waivername>.logpr@

diff diff $filels Srireoe

This builtin rule is applied if a <waivername>.logpro file exists

logpro diff %$filel% %file2% | logpro $waivername$.logpro $waivername$%.html

to Megatest Functions

a read-eval-print loop allowing
y call Megatest calls.

- This will load the scheme source code and
exectute it in the Megatest context.

eatures in v1.55

path

ur tests in different directories
from other flows

utomatic SKIP handling
— Crontab friendly runs (can overlap)
* “itemmatch” mode

— Iterated tests block only on previous same-
named iteration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

