
Coping with the TCP TIME-WAIT state on busy
Linux servers

Vincent Bernat — February 24, 2014

The Linux kernel documentation is not very helpful about what net.ipv4.tcp_tw_recycle and net.ipv4.tcp_tw_reuse

do. This lack of documentation opens the path to numerous tuning guides advising to set both these settings to � to

reduce the number of entries in the TIME-WAIT state. However, as stated by the tcp(�) manual page, the

net.ipv4.tcp_tw_recycle option is quite problematic for public-facing servers as it won�t handle connections from

two different computers behind the same NAT device, which is a problem hard to detect and waiting to bite you:

I will provide here a more detailed explanation of how to properly handle the TIME-WAIT state. Also, keep in mind we

are looking at the TCP stack of Linux. This is completely unrelated to Netfilter connection tracking which may be

tweaked in other ways.

About the TIME-WAIT state

Purpose

Problems

Connection table slot

Memory

CPU

Other solutions

Socket lingering

net.ipv4.tcp_tw_reuse

net.ipv4.tcp_tw_recycle

Summary

About the TIME-WAIT state

Let�s rewind a bit and have a close look at this TIME-WAIT state. What is it� See the TCP state diagram below:

���� TL;DR

Do not enable net.ipv4.tcp_tw_recycle—it doesn�t even exist anymore since Linux �.��. Most of the time, TIME-WAIT

sockets are harmless. Otherwise, jump to the summary for the recommended solutions.

Enable fast recycling of TIME-WAIT sockets. Enabling this option is not recommended since this causes problems when

working with NAT (Network Address Translation).

“

�

�

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

1 of 10 1/26/23, 05:56

https://manpages.debian.org/buster/manpages/tcp.7.en.html
https://manpages.debian.org/buster/manpages/tcp.7.en.html
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#about-the-time-wait-state
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#about-the-time-wait-state
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#purpose
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#purpose
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#problems
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#problems
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#connection-table-slot
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#connection-table-slot
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#memory
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#memory
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#cpu
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#cpu
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#other-solutions
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#other-solutions
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#socket-lingering
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#socket-lingering
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_reuse
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_reuse
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_recycle
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_recycle
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#about-the-time-wait-state
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-netfilter
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-netfilter
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#about-the-time-wait-state
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-source
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-source

TCP state diagram

Only the end closing the connection first will reach the TIME-WAIT state. The other end will follow a path which usually

permits it to quickly get rid of the connection.

You can have a look at the current state of connections with ss -tan:

Purpose

There are two purposes for the TIME-WAIT state:

– The most known one is to prevent delayed segments from one connection being accepted by a later connection rely-

ing on the same quadruplet (source address, source port, destination address, destination port). The sequence num-

ber also needs to be in a certain range to be accepted. This narrows a bit the problem but it still exists, especially on

fast connections with large receive windows. RFC ���� explains in detail what happens when the TIME-WAIT state is

deficient. Here is an example of what could be avoided if the TIME-WAIT state wasn�t shortened:

$ ss -tan | head -5

LISTEN 0 511 *:80 *:*

SYN-RECV 0 0 192.0.2.145:80 203.0.113.5:35449

SYN-RECV 0 0 192.0.2.145:80 203.0.113.27:53599

ESTAB 0 0 192.0.2.145:80 203.0.113.27:33605

TIME-WAIT 0 0 192.0.2.145:80 203.0.113.47:50685

�

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

2 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#purpose
https://www.rfc-editor.org/rfc/rfc1337
https://www.rfc-editor.org/rfc/rfc1337
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#purpose
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-rfc1337
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-rfc1337

Due to a shortened TIME-WAIT state, a delayed TCP segment has been accepted in an

unrelated connection.

– The other purpose is to ensure the remote end has closed the connection. When the last ACK is lost, the remote end

stays in the LAST-ACK state. Without the TIME-WAIT state, a connection could be reopened while the remote end still

thinks the previous connection is valid. When it receives a SYN segment (and the sequence number matches), it will

answer with a RST as it is not expecting such a segment. The new connection will be aborted with an error:

If the remote end stays in LAST-ACK state because the last ACK was lost, opening a new

connection with the same quadruplet will not work.

RFC ��� requires the TIME-WAIT state to last twice the time of the MSL. On Linux, this duration is not tunable and is

defined in include/net/tcp.h as one minute:

There have been propositions to turn this into a tunable value but it has been refused on the ground the TIME-WAIT

state is a good thing.

�

#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT

 * state, about 60 seconds */

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

3 of 10 1/26/23, 05:56

https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
http://web.archive.org/web/2014if_/http://comments.gmane.org/gmane.linux.network/244411
http://web.archive.org/web/2014if_/http://comments.gmane.org/gmane.linux.network/244411
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-lastack
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-lastack

Problems

Now, let�s see why this state can be annoying on a server handling a lot of connections. There are three aspects of the

problem:

– the slot used in the connection table preventing new connections of the same kind;

– the memory occupied by the socket structure in the kernel; and

– the additional CPU usage.

The result of ss -tan state time-wait | wc -l is not a problem per se!

Connection table slot

A connection in the TIME-WAIT state is kept for one minute in the connection table. This means another connection

with the same quadruplet (source address, source port, destination address, destination port) cannot exist.

For a web server, the destination address and the destination port are likely to be constant. If your web server is be-

hind an L� load-balancer, the source address will also be constant. On Linux, the client port is by default allocated in

a port range of about ��,��� ports (this can be changed by tuning net.ipv4.ip_local_port_range). This means that

only ��,��� connections can be established between the web server and the load-balancer every minute, so about

��� connections per second.

If the TIME-WAIT sockets are on the client side, such a situation is easy to detect. The call to connect() will return

EADDRNOTAVAIL and the application will log some error message about that. On the server side, this is more complex as

there is no log and no counter to rely on. In doubt, you should just try to come with something sensible to list the

number of used quadruplets:

The solution is more quadruplets. This can be done in several ways (in the order of difficulty to setup):

– use more client ports by setting net.ipv4.ip_local_port_range to a wider range;

– use more server ports by asking the web server to listen to several additional ports (��, ��, ��, …);

– use more client IP by configuring additional IP on the load balancer and use them in a round-robin fashion; or

– use more server IP by configuring additional IP on the web server.

The last solution is to tweak net.ipv4.tcp_tw_reuse and net.ipv4.tcp_tw_recycle. Don�t do that yet, we will cover

these settings later.

Memory

With many connections to handle, leaving a socket open for one additional minute may cost your server some mem-

$ ss -tan 'sport = :80' | awk '{print $(NF)" "$(NF-1)}' | \

> sed 's/:[^]*//g' | sort | uniq -c

 696 10.24.2.30 10.33.1.64

 1881 10.24.2.30 10.33.1.65

 5314 10.24.2.30 10.33.1.66

 5293 10.24.2.30 10.33.1.67

 3387 10.24.2.30 10.33.1.68

 2663 10.24.2.30 10.33.1.69

 1129 10.24.2.30 10.33.1.70

 10536 10.24.2.30 10.33.1.73

�

�

�

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

4 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#problems
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#connection-table-slot
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#memory
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#problems
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#connection-table-slot
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-outgoing
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-outgoing
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-bind
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-bind
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-others
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-others
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#memory

With many connections to handle, leaving a socket open for one additional minute may cost your server some mem

ory. For example, if you want to handle about ��,��� new connections per second, you will have about ���,���

sockets in the TIME-WAIT state. How much memory does it represent� Not that much!

First, from the application point of view, a TIME-WAIT socket does not consume any memory: the socket has been

closed. In the kernel, a TIME-WAIT socket is present in three structures (for three different purposes):

�. A hash table of connections, named the �TCP established hash table� (despite containing connections in other states)

is used to locate an existing connection, for example when receiving a new segment.

Each bucket of this hash table contains both a list of connections in the TIME-WAIT state and a list of regular active

connections. The size of the hash table depends on the system memory and is printed at boot:

It is possible to override it by specifying the number of entries on the kernel command line with the thash_entries

parameter.

Each element of the list of connections in the TIME-WAIT state is a struct tcp_timewait_sock, while the type for other

states is struct tcp_sock:

�. A set of lists of connections, called the �death row,� is used to expire the connections in the TIME-WAIT state. They are

ordered by how much time is left before expiration.

It uses the same memory space as for the entries in the hash table of connections. This is the struct hlist_node

$ dmesg | grep "TCP established hash table"

[0.169348] TCP established hash table entries: 65536 (order: 8, 1048576 bytes)

�

struct tcp_timewait_sock {

struct inet_timewait_sock tw_sk;

u32 tw_rcv_nxt;

u32 tw_snd_nxt;

u32 tw_rcv_wnd;

u32 tw_ts_offset;

u32 tw_ts_recent;

long tw_ts_recent_stamp;

};

struct inet_timewait_sock {

struct sock_common __tw_common;

int tw_timeout;

volatile unsigned char tw_substate;

unsigned char tw_rcv_wscale;

__be16 tw_sport;

unsigned int tw_ipv6only : 1,

tw_transparent : 1,

tw_pad : 6,

tw_tos : 8,

tw_ipv6_offset : 16;

unsigned long tw_ttd;

struct inet_bind_bucket *tw_tb;

struct hlist_node tw_death_node;

};

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

5 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-tcptimewaitsock
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-tcptimewaitsock

It uses the same memory space as for the entries in the hash table of connections. This is the struct hlist_node

tw_death_node member of struct inet_timewait_sock.

�. A hash table of bound ports, holding the locally bound ports and the associated parameters, is used to determine if it is

safe to listen to a given port or to find a free port in the case of a dynamic bind. The size of this hash table is the same

as the size of the hash table of connections:

Each element is a struct inet_bind_socket. There is one element for each locally bound port. A TIME-WAIT connection

to a web server is locally bound to the port �� and shares the same entry as its sibling TIME-WAIT connections. On the

other hand, a connection to a remote service is locally bound to some random port and does not share its entry.

We are only concerned by the space occupied by struct tcp_timewait_sock and struct inet_bind_socket. There is one

struct tcp_timewait_sock for each connection in the TIME-WAIT state, inbound or outbound. There is one dedicated

struct inet_bind_socket for each outbound connection and none for an inbound connection.

A struct tcp_timewait_sock is only ��� bytes while a struct inet_bind_socket is �� bytes:

If you have about ��,��� inbound connections in the TIME-WAIT state, it should eat less than �� MiB of memory. If you

have about ��,��� outbound connections in the TIME-WAIT state, you need to account for �.� MiB of additional mem-

ory. Let�s check that by looking at the output of slabtop. Here is the result on a server with about ��,��� connections

in the TIME-WAIT state, ��,��� of which are outbound connections:

There is nothing to change here: the memory used by TIME-WAIT connections is really small. If your server needs to

handle thousands of new connections per second, you need far more memory to be able to efficiently push data to

clients. The overhead of TIME-WAIT connections is negligible.

CPU

On the CPU side, searching for a free local port can be a bit expensive. The work is done by the inet_csk_get_port()

function which uses a lock and iterates on locally bound ports until a free port is found. A large number of entries in

this hash table is usually not a problem if you have a lot of outbound connections in the TIME-WAIT state (like

ephemeral connections to a memcached server): the connections usually share the same profile, the function will

quickly find a free port as it iterates on them sequentially.

�

$ dmesg | grep "TCP bind hash table"

[0.169962] TCP bind hash table entries: 65536 (order: 8, 1048576 bytes)

$ sudo apt-get install linux-image-$(uname -r)-dbg

[…]

$ gdb /usr/lib/debug/boot/vmlinux-$(uname -r)

(gdb) print sizeof(struct tcp_timewait_sock)

 $1 = 168

(gdb) print sizeof(struct tcp_sock)

 $2 = 1776

(gdb) print sizeof(struct inet_bind_bucket)

 $3 = 48

$ sudo slabtop -o | grep -E '(^ OBJS|tw_sock_TCP|tcp_bind_bucket)'

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME

 50955 49725 97% 0.25K 3397 15 13588K tw_sock_TCP

 44840 36556 81% 0.06K 760 59 3040K tcp_bind_bucket

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

6 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#cpu
https://elixir.bootlin.com/linux/v3.12/source/net/ipv4/inet_connection_sock.c#L104
https://elixir.bootlin.com/linux/v3.12/source/net/ipv4/inet_connection_sock.c#L104
https://elixir.bootlin.com/linux/v3.12/source/net/ipv4/inet_connection_sock.c#L104
https://elixir.bootlin.com/linux/v3.12/source/net/ipv4/inet_connection_sock.c#L104
https://elixir.bootlin.com/linux/v3.12/source/net/ipv4/inet_connection_sock.c#L104
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-deathrow
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-deathrow
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#cpu

quickly find a free port as it iterates on them sequentially.

Other solutions

If you still think you have a problem with TIME-WAIT connections after reading the previous section, there are three

additional solutions to solve them:

– disable socket lingering;

– net.ipv4.tcp_tw_reuse; and

– net.ipv4.tcp_tw_recycle.

Socket lingering

When close() is called, any remaining data in the kernel buffers will be sent in the background and the socket will

eventually transition to the TIME-WAIT state. The application can continue to work immediately and assume that all

data will eventually be safely delivered.

However, an application can choose to disable this behavior, known as socket lingering. There are two flavors:

�. In the first one, any remaining data will be discarded and instead of closing the connection with the normal four-

packet connection termination sequence, the connection will be closed with a RST (and therefore, the peer will de-

tect an error) and will be immediately destroyed. No TIME-WAIT state in this case.

�. With the second flavor, any data is remaining in the socket send buffer, the process will sleep when calling close()

until either all the data is sent and acknowledged by the peer or the configured linger timer expires. It is possible for

a process to not sleep by setting the socket as non-blocking. In this case, the same process happens in the back-

ground. It permits the remaining data to be sent during a configured timeout but if the data is successfully sent, the

normal close sequence is run and you get a TIME-WAIT state. And on the other case, you�ll get the connection close

with a RST and the remaining data is discarded.

In both cases, disabling socket lingering is not a one-size-fits-all solution. It may be used by some applications like

HAProxy or Nginx when it is safe to use from the upper protocol point of view. There are good reasons to not disable

it unconditionally.

net.ipv4.tcp_tw_reuse

The TIME-WAIT state prevents delayed segments to be accepted in an unrelated connection. However, in certain con-

ditions, it is possible to assume a new connection�s segment cannot be misinterpreted with an old connection�s seg-

ment.

RFC ���� presents a set of TCP extensions to improve performance over high-bandwidth paths. Among other things,

it defines a new TCP option carrying two four-byte timestamp fields. The first one is the current value of the time-

stamp clock of the TCP sending the option while the second one is the most recent timestamp received from the re-

mote host.

By enabling net.ipv4.tcp_tw_reuse, Linux will reuse an existing connection in the TIME-WAIT state for a new outgoing

connection if the new timestamp is strictly bigger than the most recent timestamp recorded for the previous connec-

tion: an outgoing connection in the TIME-WAIT state can be reused after just one second.

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

7 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#other-solutions
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#socket-lingering
https://www.haproxy.org/
https://www.haproxy.org/
http://nginx.org/
http://nginx.org/
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_reuse
https://www.rfc-editor.org/rfc/rfc1323
https://www.rfc-editor.org/rfc/rfc1323
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#other-solutions
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#socket-lingering
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_reuse

How is it safe� The first purpose of the TIME-WAIT state was to avoid duplicate segments to be accepted in an unrelated

connection. Thanks to the use of timestamps, such duplicate segments will come with an outdated timestamp and

therefore be discarded.

The second purpose was to ensure the remote end is not in the LAST-ACK state because of the loss of the last ACK. The

remote end will retransmit the FIN segment until:

�. it gives up (and tear down the connection), or

�. it receives the ACK it is waiting (and tear down the connection), or

�. it receives a RST (and tear down the connection).

If the FIN segments are received on time, the local end socket will still be in the TIME-WAIT state and the expected ACK

segments will be sent.

Once a new connection replaces the TIME-WAIT entry, the SYN segment of the new connection is ignored (thanks to

the timestamps) and won�t be answered by a RST but only by a retransmission of the FIN segment. The FIN segment

will then be answered with a RST (because the local connection is in the SYN-SENT state) which will allow the transi-

tion out of the LAST-ACK state. The initial SYN segment will eventually be resent (after one second) because there was

no answer and the connection will be established without apparent error, except a slight delay:

If the remote end stays in LAST-ACK state because the last ACK was lost, the remote

connection will be reset when the local end transition to the SYN-SENT state.

It should be noted that when a connection is reused, the TWRecycled counter is increased (despite its name).

net.ipv4.tcp_tw_recycle

This mechanism also relies on the timestamp option but affects both incoming and outgoing connections. This is

handy when the server usually closes the connection first.

The TIME-WAIT state is scheduled to expire sooner: it will be removed after the retransmission timeout (RTO) interval

which is computed from the RTT and its variance. You can spot the appropriate values for a living connection with

the ss command:

��

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

8 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_recycle
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#netipv4tcp_tw_recycle
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-serverfirst
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#fn-serverfirst

To keep the same guarantees the TIME-WAIT state was providing, while reducing the expiration timer, when a con-

nection enters the TIME-WAIT state, the latest timestamp is remembered in a dedicated structure containing various

metrics for previous known destinations. Then, Linux will drop any segment from the remote host whose time-

stamp is not strictly bigger than the latest recorded timestamp, unless the TIME-WAIT state would have expired:

When the remote host is a NAT device, the condition on timestamps will forbid all the hosts except one behind the

NAT device to connect during one minute because they do not share the same timestamp clock. In doubt, this is far

better to disable this option since it leads to difficult to detect and difficult to diagnose problems.

The LAST-ACK state is handled in the same way as for net.ipv4.tcp_tw_reuse.

Summary

The universal solution is to increase the number of possible quadruplets by using, for example, more server ports. This

will allow you to not exhaust the possible connections with TIME-WAIT entries.

On the server side, never enable net.ipv4.tcp_tw_recycle due to its side effects. Enabling net.ipv4.tcp_tw_reuse is

useless for incoming connections.

On the client side, enabling net.ipv4.tcp_tw_reuse is another almost-safe solution. Enabling net.ipv4.tcp_tw_recycle

in addition to net.ipv4.tcp_tw_reuse is mostly useless.

Moreover, when designing protocols, don�t let clients close first. Clients won�t have to deal with the TIME-WAIT state

pushing the responsibility to servers which are better suited to handle this.

And a final quote by W. Richard Stevens, in Unix Network Programming

$ ss --info sport = :2112 dport = :4057

State Recv-Q Send-Q Local Address:Port Peer Address:Port

ESTAB 0 1831936 10.47.0.113:2112 10.65.1.42:4057

 cubic wscale:7,7 rto:564 rtt:352.5/4 ato:40 cwnd:386 ssthresh:200 send 4.5Mbps rcv_space:5792

if (tmp_opt.saw_tstamp &&

tcp_death_row.sysctl_tw_recycle &&

(dst = inet_csk_route_req(sk, &fl4, req, want_cookie)) != NULL &&

fl4.daddr == saddr &&

(peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {

inet_peer_refcheck(peer);

if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&

(s32)(peer->tcp_ts - req->ts_recent) >

TCP_PAWS_WINDOW) {

NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);

goto drop_and_release;

}

}

���� Update (����-��)

Starting from Linux �.�� (commit ��a��caee���), Linux will randomize timestamp offsets for each connection,

making this option completely broken, with or without NAT. It has been completely removed from Linux �.��.

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

9 of 10 1/26/23, 05:56

https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary
http://www.kohala.com/start/
http://www.kohala.com/start/
https://www.amazon.com/Unix-Network-Programming-Volume-Networking/dp/0131411551
https://www.amazon.com/Unix-Network-Programming-Volume-Networking/dp/0131411551
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95a22caee396cef0bb2ca8fafdd82966a49367bb
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95a22caee396cef0bb2ca8fafdd82966a49367bb
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4396e46187ca5070219b81773c4e65088dac50cc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4396e46187ca5070219b81773c4e65088dac50cc
https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-state-linux#summary

And a final quote by W. Richard Stevens, in Unix Network Programming:

· · ·

�. Notably, fiddling with net.netfilter.nf_conntrack_tcp_timeout_time_wait won�t change anything on how the TCP stack will handle

the TIME-WAIT state.

�. This diagram is licensed under the LaTeX Project Public License �.�. The original file is available on this page.

�. The first workaround proposed in RFC ���� is to ignore RST segments in the TIME-WAIT state. This behavior is controlled by

net.ipv4.rfc1337 which is not enabled by default on Linux because this is not a complete solution to the problem described in the

RFC.

�. While in the LAST-ACK state, a connection will retransmit the last FIN segment until it gets the expected ACK segment. Therefore, it is

unlikely we stay long in this state.

�. On the client side, older kernels also have to find a free local tuple (source address and source port) for each outgoing connection.

Increasing the number of server ports or IP won�t help in this case. Linux �.� is recent enough to be able to share the same local tuple

for different destinations. Thanks to Willy Tarreau for his insight on this aspect.

�. To avoid EADDRINUSE errors, the load balancer needs to use the SO_REUSEADDR option before calling bind(), then connect().

�. This last solution may seem a bit dumb since you could just use more ports but some servers are not able to be configured this way.

The before last solution can also be quite cumbersome to setup, depending on the load-balancing software, but uses less IP than the

last solution.

�. The use of a dedicated memory structure for sockets in the TIME-WAIT is here since Linux �.�.��. The struct sock_common structure is a

bit more verbose and I won�t copy it here.

�. Since Linux �.�, the way TIME-WAIT sockets are tracked has been modified to increase performance and parallelism. The death row is

now just a hash table.

��. When the server closes the connection first, it gets the TIME-WAIT state while the client will consider the corresponding quadruplet

free and hence may reuse it for a new connection.

The TIME_WAIT state is our friend and is there to help us (i.e., to let old duplicate segments expire in the network). Instead of

trying to avoid the state, we should understand it.

“

Coping with the TCP TIME-WAIT state on busy Linux servers https://vincent.bernat.ch/en/blog/2014-tcp-time-wait-stat...

10 of 10 1/26/23, 05:56

http://www.kohala.com/start/
http://www.kohala.com/start/
https://www.amazon.com/Unix-Network-Programming-Volume-Networking/dp/0131411551
https://www.amazon.com/Unix-Network-Programming-Volume-Networking/dp/0131411551
https://www.latex-project.org/lppl.txt
https://www.latex-project.org/lppl.txt
http://www.texample.net/tikz/examples/tcp-state-machine/
http://www.texample.net/tikz/examples/tcp-state-machine/
https://www.rfc-editor.org/rfc/rfc1337
https://www.rfc-editor.org/rfc/rfc1337
http://marc.info/?l=haproxy&m=139315382127339&w=2
http://marc.info/?l=haproxy&m=139315382127339&w=2
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://idea.popcount.org/2014-04-03-bind-before-connect/
https://elixir.bootlin.com/linux/v3.12/source/include/net/sock.h#L157
https://elixir.bootlin.com/linux/v3.12/source/include/net/sock.h#L157
https://elixir.bootlin.com/linux/v3.12/source/include/net/sock.h#L157
https://elixir.bootlin.com/linux/v3.12/source/include/net/sock.h#L157
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=789f558cfb3680aeb52de137418637f6b04b7d22
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=789f558cfb3680aeb52de137418637f6b04b7d22

