////////////////////////////////////////////////////////////////////////////////
//
// Filename: rxuartlite.v
//
// Project: wbuart32, a full featured UART with simulator
//
// Purpose: Receive and decode inputs from a single UART line.
//
//
// To interface with this module, connect it to your system clock,
// and a UART input. Set the parameter to the number of clocks per
// baud. When data becomes available, the o_wr line will be asserted
// for one clock cycle.
//
// This interface only handles 8N1 serial port communications. It does
// not handle the break, parity, or frame error conditions.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015-2020, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
`define RXUL_BIT_ZERO 4'h0
`define RXUL_BIT_ONE 4'h1
`define RXUL_BIT_TWO 4'h2
`define RXUL_BIT_THREE 4'h3
`define RXUL_BIT_FOUR 4'h4
`define RXUL_BIT_FIVE 4'h5
`define RXUL_BIT_SIX 4'h6
`define RXUL_BIT_SEVEN 4'h7
`define RXUL_STOP 4'h8
`define RXUL_WAIT 4'h9
`define RXUL_IDLE 4'hf
module rxuartlite(i_clk, i_uart_rx, o_wr, o_data);
parameter TIMER_BITS = 10;
`ifdef FORMAL
parameter [(TIMER_BITS-1):0] CLOCKS_PER_BAUD = 16; // Necessary for formal proof
`else
parameter [(TIMER_BITS-1):0] CLOCKS_PER_BAUD = 868; // 115200 MBaud at 100MHz
`endif
localparam TB = TIMER_BITS;
input wire i_clk;
input wire i_uart_rx;
output reg o_wr;
output reg [7:0] o_data;
wire [(TB-1):0] half_baud;
reg [3:0] state;
assign half_baud = { 1'b0, CLOCKS_PER_BAUD[(TB-1):1] };
reg [(TB-1):0] baud_counter;
reg zero_baud_counter;
// Since this is an asynchronous receiver, we need to register our
// input a couple of clocks over to avoid any problems with
// metastability. We do that here, and then ignore all but the
// ck_uart wire.
reg q_uart, qq_uart, ck_uart;
initial q_uart = 1'b1;
initial qq_uart = 1'b1;
initial ck_uart = 1'b1;
always @(posedge i_clk)
{ ck_uart, qq_uart, q_uart } <= { qq_uart, q_uart, i_uart_rx };
// Keep track of the number of clocks since the last change.
//
// This is used to determine if we are in either a break or an idle
// condition, as discussed further below.
reg [(TB-1):0] chg_counter;
initial chg_counter = {(TB){1'b1}};
always @(posedge i_clk)
if (qq_uart != ck_uart)
chg_counter <= 0;
else if (chg_counter != { (TB){1'b1} })
chg_counter <= chg_counter + 1;
// Are we in the middle of a baud iterval? Specifically, are we
// in the middle of a start bit? Set this to high if so. We'll use
// this within our state machine to transition out of the IDLE
// state.
reg half_baud_time;
initial half_baud_time = 0;
always @(posedge i_clk)
half_baud_time <= (!ck_uart)&&(chg_counter >= half_baud-1'b1-1'b1);
initial state = `RXUL_IDLE;
always @(posedge i_clk)
if (state == `RXUL_IDLE)
begin // Idle state, independent of baud counter
// By default, just stay in the IDLE state
state <= `RXUL_IDLE;
if ((!ck_uart)&&(half_baud_time))
// UNLESS: We are in the center of a valid
// start bit
state <= `RXUL_BIT_ZERO;
end else if ((state >= `RXUL_WAIT)&&(ck_uart))
state <= `RXUL_IDLE;
else if (zero_baud_counter)
begin
if (state <= `RXUL_STOP)
// Data arrives least significant bit first.
// By the time this is clocked in, it's what
// you'll have.
state <= state + 1;
end
// Data bit capture logic.
//
// This is drastically simplified from the state machine above, based
// upon: 1) it doesn't matter what it is until the end of a captured
// byte, and 2) the data register will flush itself of any invalid
// data in all other cases. Hence, let's keep it real simple.
reg [7:0] data_reg;
always @(posedge i_clk)
if ((zero_baud_counter)&&(state != `RXUL_STOP))
data_reg <= { qq_uart, data_reg[7:1] };
// Our data bit logic doesn't need nearly the complexity of all that
// work above. Indeed, we only need to know if we are at the end of
// a stop bit, in which case we copy the data_reg into our output
// data register, o_data, and tell others (for one clock) that data is
// available.
//
initial o_wr = 1'b0;
initial o_data = 8'h00;
always @(posedge i_clk)
if ((zero_baud_counter)&&(state == `RXUL_STOP)&&(ck_uart))
begin
o_wr <= 1'b1;
o_data <= data_reg;
end else
o_wr <= 1'b0;
// The baud counter
//
// This is used as a "clock divider" if you will, but the clock needs
// to be reset before any byte can be decoded. In all other respects,
// we set ourselves up for CLOCKS_PER_BAUD counts between baud
// intervals.
initial baud_counter = 0;
always @(posedge i_clk)
if (((state==`RXUL_IDLE))&&(!ck_uart)&&(half_baud_time))
baud_counter <= CLOCKS_PER_BAUD-1'b1;
else if (state == `RXUL_WAIT)
baud_counter <= 0;
else if ((zero_baud_counter)&&(state < `RXUL_STOP))
baud_counter <= CLOCKS_PER_BAUD-1'b1;
else if (!zero_baud_counter)
baud_counter <= baud_counter-1'b1;
// zero_baud_counter
//
// Rather than testing whether or not (baud_counter == 0) within our
// (already too complicated) state transition tables, we use
// zero_baud_counter to pre-charge that test on the clock
// before--cleaning up some otherwise difficult timing dependencies.
initial zero_baud_counter = 1'b1;
always @(posedge i_clk)
if ((state == `RXUL_IDLE)&&(!ck_uart)&&(half_baud_time))
zero_baud_counter <= 1'b0;
else if (state == `RXUL_WAIT)
zero_baud_counter <= 1'b1;
else if ((zero_baud_counter)&&(state < `RXUL_STOP))
zero_baud_counter <= 1'b0;
else if (baud_counter == 1)
zero_baud_counter <= 1'b1;
`ifdef FORMAL
`define FORMAL_VERILATOR
`else
`ifdef VERILATOR
`define FORMAL_VERILATOR
`endif
`endif
`ifdef FORMAL
`define ASSUME assume
`define ASSERT assert
`ifdef VERIFIC
(* gclk *) wire gbl_clk;
global clocking @(posedge gbl_clk); endclocking
`endif
localparam F_CKRES = 10;
(* anyseq *) wire f_tx_start;
(* anyconst *) wire [(F_CKRES-1):0] f_tx_step;
reg f_tx_zclk;
reg [(TB-1):0] f_tx_timer;
wire [7:0] f_rx_newdata;
reg [(TB-1):0] f_tx_baud;
wire f_tx_zbaud;
wire [(TB-1):0] f_max_baud_difference;
reg [(TB-1):0] f_baud_difference;
reg [(TB+3):0] f_tx_count, f_rx_count;
(* anyseq *) wire [7:0] f_tx_data;
wire f_txclk;
reg [1:0] f_rx_clock;
reg [(F_CKRES-1):0] f_tx_clock;
reg f_past_valid, f_past_valid_tx;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
initial f_rx_clock = 3'h0;
always @($global_clock)
f_rx_clock <= f_rx_clock + 1'b1;
always @(*)
assume(i_clk == f_rx_clock[1]);
///////////////////////////////////////////////////////////
//
//
// Generate a transmitted signal
//
//
///////////////////////////////////////////////////////////
// First, calculate the transmit clock
localparam [(F_CKRES-1):0] F_MIDSTEP = { 2'b01, {(F_CKRES-2){1'b0}} };
//
// Need to allow us to slip by half a baud clock over 10 baud intervals
//
// (F_STEP / (2^F_CKRES)) * (CLOCKS_PER_BAUD)*10 < CLOCKS_PER_BAUD/2
// F_STEP * 2 * 10 < 2^F_CKRES
localparam [(F_CKRES-1):0] F_HALFSTEP= F_MIDSTEP/32;
localparam [(F_CKRES-1):0] F_MINSTEP = F_MIDSTEP - F_HALFSTEP + 1;
localparam [(F_CKRES-1):0] F_MAXSTEP = F_MIDSTEP + F_HALFSTEP - 1;
initial assert(F_MINSTEP <= F_MIDSTEP);
initial assert(F_MIDSTEP <= F_MAXSTEP);
// assume((f_tx_step >= F_MINSTEP)&&(f_tx_step <= F_MAXSTEP));
//
//
always @(*) assume((f_tx_step == F_MINSTEP)
||(f_tx_step == F_MIDSTEP)
||(f_tx_step == F_MAXSTEP));
always @($global_clock)
f_tx_clock <= f_tx_clock + f_tx_step;
assign f_txclk = f_tx_clock[F_CKRES-1];
//
initial f_past_valid_tx = 1'b0;
always @(posedge f_txclk)
f_past_valid_tx <= 1'b1;
initial assume(i_uart_rx);
//////////////////////////////////////////////
//
//
// Build a simulated transmitter
//
//
//////////////////////////////////////////////
//
// First, the simulated timing generator
// parameter TIMER_BITS = 10;
// parameter [(TIMER_BITS-1):0] CLOCKS_PER_BAUD = 868;
// localparam TB = TIMER_BITS;
always @(*)
if (f_tx_busy)
assume(!f_tx_start);
initial f_tx_baud = 0;
always @(posedge f_txclk)
if ((f_tx_zbaud)&&((f_tx_busy)||(f_tx_start)))
f_tx_baud <= CLOCKS_PER_BAUD-1'b1;
else if (!f_tx_zbaud)
f_tx_baud <= f_tx_baud - 1'b1;
always @(*)
`ASSERT(f_tx_baud < CLOCKS_PER_BAUD);
always @(*)
if (!f_tx_busy)
`ASSERT(f_tx_baud == 0);
assign f_tx_zbaud = (f_tx_baud == 0);
// But only if we aren't busy
initial assume(f_tx_data == 0);
always @(posedge f_txclk)
if ((!f_tx_zbaud)||(f_tx_busy)||(!f_tx_start))
assume(f_tx_data == $past(f_tx_data));
// Force the data to change on a clock only
always @($global_clock)
if ((f_past_valid)&&(!$rose(f_txclk)))
assume($stable(f_tx_data));
else if (f_tx_busy)
assume($stable(f_tx_data));
//
always @($global_clock)
if ((!f_past_valid)||(!$rose(f_txclk)))
begin
assume($stable(f_tx_start));
assume($stable(f_tx_data));
end
//
//
//
reg [9:0] f_tx_reg;
reg f_tx_busy;
// Here's the transmitter itself (roughly)
initial f_tx_busy = 1'b0;
initial f_tx_reg = 0;
always @(posedge f_txclk)
if (!f_tx_zbaud)
begin
`ASSERT(f_tx_busy);
end else begin
f_tx_reg <= { 1'b0, f_tx_reg[9:1] };
if (f_tx_start)
f_tx_reg <= { 1'b1, f_tx_data, 1'b0 };
end
// Create a busy flag that we'll use
always @(*)
if (!f_tx_zbaud)
f_tx_busy <= 1'b1;
else if (|f_tx_reg)
f_tx_busy <= 1'b1;
else
f_tx_busy <= 1'b0;
//
// Tie the TX register to the TX data
always @(posedge f_txclk)
if (f_tx_reg[9])
`ASSERT(f_tx_reg[8:0] == { f_tx_data, 1'b0 });
else if (f_tx_reg[8])
`ASSERT(f_tx_reg[7:0] == f_tx_data[7:0] );
else if (f_tx_reg[7])
`ASSERT(f_tx_reg[6:0] == f_tx_data[7:1] );
else if (f_tx_reg[6])
`ASSERT(f_tx_reg[5:0] == f_tx_data[7:2] );
else if (f_tx_reg[5])
`ASSERT(f_tx_reg[4:0] == f_tx_data[7:3] );
else if (f_tx_reg[4])
`ASSERT(f_tx_reg[3:0] == f_tx_data[7:4] );
else if (f_tx_reg[3])
`ASSERT(f_tx_reg[2:0] == f_tx_data[7:5] );
else if (f_tx_reg[2])
`ASSERT(f_tx_reg[1:0] == f_tx_data[7:6] );
else if (f_tx_reg[1])
`ASSERT(f_tx_reg[0] == f_tx_data[7]);
// Our counter since we start
initial f_tx_count = 0;
always @(posedge f_txclk)
if (!f_tx_busy)
f_tx_count <= 0;
else
f_tx_count <= f_tx_count + 1'b1;
always @(*)
if (f_tx_reg == 10'h0)
assume(i_uart_rx);
else
assume(i_uart_rx == f_tx_reg[0]);
//
// Make sure the absolute transmit clock timer matches our state
//
always @(posedge f_txclk)
if (!f_tx_busy)
begin
if ((!f_past_valid_tx)||(!$past(f_tx_busy)))
`ASSERT(f_tx_count == 0);
end else if (f_tx_reg[9])
`ASSERT(f_tx_count ==
CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[8])
`ASSERT(f_tx_count ==
2 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[7])
`ASSERT(f_tx_count ==
3 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[6])
`ASSERT(f_tx_count ==
4 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[5])
`ASSERT(f_tx_count ==
5 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[4])
`ASSERT(f_tx_count ==
6 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[3])
`ASSERT(f_tx_count ==
7 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[2])
`ASSERT(f_tx_count ==
8 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[1])
`ASSERT(f_tx_count ==
9 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else if (f_tx_reg[0])
`ASSERT(f_tx_count ==
10 * CLOCKS_PER_BAUD -1 -f_tx_baud);
else
`ASSERT(f_tx_count ==
11 * CLOCKS_PER_BAUD -1 -f_tx_baud);
///////////////////////////////////////
//
// Receiver
//
///////////////////////////////////////
//
// Count RX clocks since the start of the first stop bit, measured in
// rx clocks
initial f_rx_count = 0;
always @(posedge i_clk)
if (state == `RXUL_IDLE)
f_rx_count = (!ck_uart) ? (chg_counter+2) : 0;
else
f_rx_count <= f_rx_count + 1'b1;
always @(posedge i_clk)
if (state == 0)
`ASSERT(f_rx_count
== half_baud + (CLOCKS_PER_BAUD-baud_counter));
else if (state == 1)
`ASSERT(f_rx_count == half_baud + 2 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 2)
`ASSERT(f_rx_count == half_baud + 3 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 3)
`ASSERT(f_rx_count == half_baud + 4 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 4)
`ASSERT(f_rx_count == half_baud + 5 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 5)
`ASSERT(f_rx_count == half_baud + 6 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 6)
`ASSERT(f_rx_count == half_baud + 7 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 7)
`ASSERT(f_rx_count == half_baud + 8 * CLOCKS_PER_BAUD
- baud_counter);
else if (state == 8)
`ASSERT((f_rx_count == half_baud + 9 * CLOCKS_PER_BAUD
- baud_counter)
||(f_rx_count == half_baud + 10 * CLOCKS_PER_BAUD
- baud_counter));
always @(*)
`ASSERT( ((!zero_baud_counter)
&&(state == `RXUL_IDLE)
&&(baud_counter == 0))
||((zero_baud_counter)&&(baud_counter == 0))
||((!zero_baud_counter)&&(baud_counter != 0)));
always @(posedge i_clk)
if (!f_past_valid)
`ASSERT((state == `RXUL_IDLE)&&(baud_counter == 0)
&&(zero_baud_counter));
always @(*)
begin
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h2);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h4);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h5);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h6);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h9);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'ha);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'hb);
`ASSERT({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'hd);
end
always @(posedge i_clk)
if ((f_past_valid)&&($past(state) >= `RXUL_WAIT)&&($past(ck_uart)))
`ASSERT(state == `RXUL_IDLE);
always @(posedge i_clk)
if ((f_past_valid)&&($past(state) >= `RXUL_WAIT)
&&(($past(state) != `RXUL_IDLE)||(state == `RXUL_IDLE)))
`ASSERT(zero_baud_counter);
// Calculate an absolute value of the difference between the two baud
// clocks
always @(posedge i_clk)
if ((f_past_valid)&&($past(state)==`RXUL_IDLE)&&(state == `RXUL_IDLE))
begin
`ASSERT(($past(ck_uart))
||(chg_counter <=
{ 1'b0, CLOCKS_PER_BAUD[(TB-1):1] }));
end
always @(posedge f_txclk)
if (!f_past_valid_tx)
`ASSERT((state == `RXUL_IDLE)&&(baud_counter == 0)
&&(zero_baud_counter)&&(!f_tx_busy));
wire [(TB+3):0] f_tx_count_two_clocks_ago;
assign f_tx_count_two_clocks_ago = f_tx_count - 2;
always @(*)
if (f_tx_count >= f_rx_count + 2)
f_baud_difference = f_tx_count_two_clocks_ago - f_rx_count;
else
f_baud_difference = f_rx_count - f_tx_count_two_clocks_ago;
localparam F_SYNC_DLY = 8;
reg [(TB+4+F_CKRES-1):0] f_sub_baud_difference;
reg [F_CKRES-1:0] ck_tx_clock;
reg [((F_SYNC_DLY-1)*F_CKRES)-1:0] q_tx_clock;
reg [TB+3:0] ck_tx_count;
reg [(F_SYNC_DLY-1)*(TB+4)-1:0] q_tx_count;
initial q_tx_count = 0;
initial ck_tx_count = 0;
initial q_tx_clock = 0;
initial ck_tx_clock = 0;
always @($global_clock)
{ ck_tx_clock, q_tx_clock } <= { q_tx_clock, f_tx_clock };
always @($global_clock)
{ ck_tx_count, q_tx_count } <= { q_tx_count, f_tx_count };
reg [TB+4+F_CKRES-1:0] f_ck_tx_time, f_rx_time;
always @(*)
f_ck_tx_time = { ck_tx_count, !ck_tx_clock[F_CKRES-1],
ck_tx_clock[F_CKRES-2:0] };
always @(*)
f_rx_time = { f_rx_count, !f_rx_clock[1], f_rx_clock[0],
{(F_CKRES-2){1'b0}} };
reg [TB+4+F_CKRES-1:0] f_signed_difference;
always @(*)
f_signed_difference = f_ck_tx_time - f_rx_time;
always @(*)
if (f_signed_difference[TB+4+F_CKRES-1])
f_sub_baud_difference = -f_signed_difference;
else
f_sub_baud_difference = f_signed_difference;
always @($global_clock)
if (state == `RXUL_WAIT)
`ASSERT((!f_tx_busy)||(f_tx_reg[9:1] == 0));
always @($global_clock)
if (state == `RXUL_IDLE)
begin
`ASSERT((!f_tx_busy)||(f_tx_reg[9])||(f_tx_reg[9:1]==0));
if (!ck_uart)
;//`PHASE_TWO_ASSERT((f_rx_count < 4)||(f_sub_baud_difference <= ((CLOCKS_PER_BAUD<<F_CKRES)/20)));
else
`ASSERT((f_tx_reg[9:1]==0)||(f_tx_count < (3 + CLOCKS_PER_BAUD/2)));
end else if (state == 0)
`ASSERT(f_sub_baud_difference
<= 2 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 1)
`ASSERT(f_sub_baud_difference
<= 3 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 2)
`ASSERT(f_sub_baud_difference
<= 4 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 3)
`ASSERT(f_sub_baud_difference
<= 5 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 4)
`ASSERT(f_sub_baud_difference
<= 6 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 5)
`ASSERT(f_sub_baud_difference
<= 7 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 6)
`ASSERT(f_sub_baud_difference
<= 8 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 7)
`ASSERT(f_sub_baud_difference
<= 9 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
else if (state == 8)
`ASSERT(f_sub_baud_difference
<= 10 * ((CLOCKS_PER_BAUD<<F_CKRES)/20));
always @(posedge i_clk)
if (o_wr)
`ASSERT(o_data == $past(f_tx_data,4));
// always @(posedge i_clk)
// if ((zero_baud_counter)&&(state != 4'hf)&&(CLOCKS_PER_BAUD > 6))
// assert(i_uart_rx == ck_uart);
// Make sure the data register matches
always @(posedge i_clk)
// if ((f_past_valid)&&(state != $past(state)))
begin
if (state == 4'h0)
`ASSERT(!data_reg[7]);
if (state == 4'h1)
`ASSERT((data_reg[7]
== $past(f_tx_data[0]))&&(!data_reg[6]));
if (state == 4'h2)
`ASSERT(data_reg[7:6]
== $past(f_tx_data[1:0]));
if (state == 4'h3)
`ASSERT(data_reg[7:5] == $past(f_tx_data[2:0]));
if (state == 4'h4)
`ASSERT(data_reg[7:4] == $past(f_tx_data[3:0]));
if (state == 4'h5)
`ASSERT(data_reg[7:3] == $past(f_tx_data[4:0]));
if (state == 4'h6)
`ASSERT(data_reg[7:2] == $past(f_tx_data[5:0]));
if (state == 4'h7)
`ASSERT(data_reg[7:1] == $past(f_tx_data[6:0]));
if (state == 4'h8)
`ASSERT(data_reg[7:0] == $past(f_tx_data[7:0]));
end
////////////////////////////////////////////////////////////////////////
//
// Cover properties
//
////////////////////////////////////////////////////////////////////////
//
always @(posedge i_clk)
cover(o_wr); // Step 626, takes about 20mins
always @(posedge i_clk)
begin
cover(!ck_uart);
cover((f_past_valid)&&($rose(ck_uart))); // 82
cover((zero_baud_counter)&&(state == `RXUL_BIT_ZERO)); // 110
cover((zero_baud_counter)&&(state == `RXUL_BIT_ONE)); // 174
cover((zero_baud_counter)&&(state == `RXUL_BIT_TWO)); // 238
cover((zero_baud_counter)&&(state == `RXUL_BIT_THREE));// 302
cover((zero_baud_counter)&&(state == `RXUL_BIT_FOUR)); // 366
cover((zero_baud_counter)&&(state == `RXUL_BIT_FIVE)); // 430
cover((zero_baud_counter)&&(state == `RXUL_BIT_SIX)); // 494
cover((zero_baud_counter)&&(state == `RXUL_BIT_SEVEN));// 558
cover((zero_baud_counter)&&(state == `RXUL_STOP)); // 622
cover((zero_baud_counter)&&(state == `RXUL_WAIT)); // 626
end
`endif
`ifdef FORMAL_VERILATOR
// FORMAL properties which can be tested via Verilator as well as
// Yosys FORMAL
always @(*)
assert((state == 4'hf)||(state <= `RXUL_WAIT));
always @(*)
assert(zero_baud_counter == (baud_counter == 0)? 1'b1:1'b0);
always @(*)
assert(baud_counter <= CLOCKS_PER_BAUD-1'b1);
`endif
endmodule