#ifndef _avcall_x86_64_c /*-*- C -*-*/
#define _avcall_x86_64_c
/**
Copyright 1993 Bill Triggs, <Bill.Triggs@inrialpes.fr>
Copyright 1995-1999, 2004 Bruno Haible, <bruno@clisp.org>
This is free software distributed under the GNU General Public
Licence described in the file COPYING. Contact the author if
you don't have this or can't live with it. There is ABSOLUTELY
NO WARRANTY, explicit or implied, on this software.
**/
/*----------------------------------------------------------------------
!!! THIS ROUTINE MUST BE COMPILED gcc -O -fno-omit-frame-pointer !!!
Foreign function interface for a Linux x86_64 (a.k.a. amd64) with gcc.
This calls a C function with an argument list built up using macros
defined in av_call.h.
x86_64 Argument Passing Conventions are documented in
http://www.x86-64.org/abi.pdf.
Up to six words are passed in integer registers (%rdi, %rsi, %rdx, %rcx,
%r8, %r9). Up to 8 float/double arguments are passed in SSE registers
(%xmm0..%xmm7). Varargs functions expect an upper bound for the number
of SSE register arguments in %al (in the range 0..8). All arguments
are passed on the stack with word alignment. Structure args are passed
as true structures embedded in the argument stack.
Integers are returned in %rax, %rdx. Float/double values are returned
in %xmm0, %xmm1. To return a structure, the called function copies the
value to space pointed to by its first argument, and all other arguments
are shifted down by one.
----------------------------------------------------------------------*/
#include "avcall.h.in"
#define RETURN(TYPE,VAL) (*(TYPE*)l->raddr = (TYPE)(VAL))
register __avword iarg1 __asm__("rdi");
register __avword iarg2 __asm__("rsi");
register __avword iarg3 __asm__("rdx");
register __avword iarg4 __asm__("rcx");
register __avword iarg5 __asm__("r8");
register __avword iarg6 __asm__("r9");
register double farg1 __asm__("xmm0");
register double farg2 __asm__("xmm1");
register double farg3 __asm__("xmm2");
register double farg4 __asm__("xmm3");
register double farg5 __asm__("xmm4");
register double farg6 __asm__("xmm5");
register double farg7 __asm__("xmm6");
register double farg8 __asm__("xmm7");
int
__builtin_avcall(av_alist* l)
{
register __avword* sp __asm__("rsp"); /* C names for registers */
register __avword iret __asm__("rax");
register __avword iret2 __asm__("rdx");
register double dret __asm__("xmm0");
__avword* argframe = (sp -= __AV_ALIST_WORDS); /* make room for argument list */
int arglen = l->aptr - l->args;
int farglen = l->faptr - l->fargs;
__avword i, i2;
for (i = 0; i < arglen; i++) /* push function args onto stack */
argframe[i] = l->args[i];
/* put 6 integer args into registers */
iarg1 = l->iargs[0];
iarg2 = l->iargs[1];
iarg3 = l->iargs[2];
iarg4 = l->iargs[3];
iarg5 = l->iargs[4];
iarg6 = l->iargs[5];
/* Call function. It's OK to pass 8 values in SSE registers even if the
called function takes less than 8 float/double arguments. Similarly
for the integer arguments. */
if (l->rtype == __AVfloat) {
*(float*)l->raddr =
(*(float(*)())l->func)(farglen > 0 ? l->fargs[0] : 0.0,
farglen > 1 ? l->fargs[1] : 0.0,
farglen > 2 ? l->fargs[2] : 0.0,
farglen > 3 ? l->fargs[3] : 0.0,
farglen > 4 ? l->fargs[4] : 0.0,
farglen > 5 ? l->fargs[5] : 0.0,
farglen > 6 ? l->fargs[6] : 0.0,
farglen > 7 ? l->fargs[7] : 0.0);
} else
if (l->rtype == __AVdouble) {
*(double*)l->raddr =
(*(double(*)())l->func)(farglen > 0 ? l->fargs[0] : 0.0,
farglen > 1 ? l->fargs[1] : 0.0,
farglen > 2 ? l->fargs[2] : 0.0,
farglen > 3 ? l->fargs[3] : 0.0,
farglen > 4 ? l->fargs[4] : 0.0,
farglen > 5 ? l->fargs[5] : 0.0,
farglen > 6 ? l->fargs[6] : 0.0,
farglen > 7 ? l->fargs[7] : 0.0);
} else {
i = (*l->func)(farglen > 0 ? l->fargs[0] : 0.0,
farglen > 1 ? l->fargs[1] : 0.0,
farglen > 2 ? l->fargs[2] : 0.0,
farglen > 3 ? l->fargs[3] : 0.0,
farglen > 4 ? l->fargs[4] : 0.0,
farglen > 5 ? l->fargs[5] : 0.0,
farglen > 6 ? l->fargs[6] : 0.0,
farglen > 7 ? l->fargs[7] : 0.0);
i2 = iret2;
/* save return value */
if (l->rtype == __AVvoid) {
} else
if (l->rtype == __AVword) {
RETURN(__avword, i);
} else
if (l->rtype == __AVchar) {
RETURN(char, i);
} else
if (l->rtype == __AVschar) {
RETURN(signed char, i);
} else
if (l->rtype == __AVuchar) {
RETURN(unsigned char, i);
} else
if (l->rtype == __AVshort) {
RETURN(short, i);
} else
if (l->rtype == __AVushort) {
RETURN(unsigned short, i);
} else
if (l->rtype == __AVint) {
RETURN(int, i);
} else
if (l->rtype == __AVuint) {
RETURN(unsigned int, i);
} else
if (l->rtype == __AVlong) {
RETURN(long, i);
} else
if (l->rtype == __AVulong) {
RETURN(unsigned long, i);
} else
if (l->rtype == __AVlonglong) {
RETURN(long long, i);
} else
if (l->rtype == __AVulonglong) {
RETURN(unsigned long long, i);
} else
/* see above
if (l->rtype == __AVfloat) {
} else
if (l->rtype == __AVdouble) {
} else
*/
if (l->rtype == __AVvoidp) {
RETURN(void*, i);
} else
if (l->rtype == __AVstruct) {
if (l->flags & __AV_PCC_STRUCT_RETURN) {
/* pcc struct return convention: need a *(TYPE*)l->raddr = *(TYPE*)i; */
if (l->rsize == sizeof(char)) {
RETURN(char, *(char*)i);
} else
if (l->rsize == sizeof(short)) {
RETURN(short, *(short*)i);
} else
if (l->rsize == sizeof(int)) {
RETURN(int, *(int*)i);
} else
if (l->rsize == sizeof(long)) {
RETURN(long, *(long*)i);
} else {
int n = (l->rsize + sizeof(__avword)-1)/sizeof(__avword);
while (--n >= 0)
((__avword*)l->raddr)[n] = ((__avword*)i)[n];
}
} else {
/* normal struct return convention */
if (l->flags & __AV_REGISTER_STRUCT_RETURN) {
if (l->rsize == sizeof(char)) {
RETURN(char, i);
} else
if (l->rsize == sizeof(short)) {
RETURN(short, i);
} else
if (l->rsize == sizeof(int)) {
RETURN(int, i);
} else
if (l->rsize == sizeof(long)) {
RETURN(long, i);
} else
if (l->rsize == 2*sizeof(__avword)) {
((__avword*)l->raddr)[0] = i;
((__avword*)l->raddr)[1] = i2;
}
}
}
}
}
sp += __AV_ALIST_WORDS;
return 0;
}
#endif /*_avcall_x86_64_c */