Megatest/Logpro Training

Using Megatest and Logpro for creating flows and
automation for software, EDA, or Unix infrastructure
at the unit, functional, and regression levels.

Matt Welland, 2016

;; Copyright 2006-2012, Matthew Welland.

;; This file is part of Megatest.

;7 Megatest is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or

;; (at your option) any later version.

;; Megatest is distributed in the hope that it will be useful,
;3 but WITHOUT ANY WARRANTY; without even the implied warranty of
;;, MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

;; GNU General Public License for more details o

;3 You should have received a copy of the GNU General Public License

;; along with Megatest. If not, see <http://www.gnu.org/licenses/>.

Training Overview

- Background

- Getting started

- Dashboard/command line (existing flow)
* Running tests and managing runs
- Creating a flow

» configs: megatest, runconfig
o tests/tasks: testconfig, logpro

- Getting information about runs and tests
- Preview of advanced Megatest topics

- Future Megatest development

What does Megatest do?

+ Run tests or tasks with

- ohe or many steps
- dynamic test dependency calculation
- on multiple hosts
- multi-level iteration
- Report, record and roll up state, status and data
- state: RUNNING, COMPLETED
- status: PASS, FAIL, WARN, CHECK
- data: slew rate, count of failed assertions etc.
Organize “runs” by project specific variables

Megatest Design Philosophy

Factors for Sustainable Automation

Self-checking write directed or self-checking tests (avoid delta based tests)

Immutable once run do not modify, reuse or overwrite tests.

Relocatable the test area can be checked out and the tests run anywhere

Deployable anyone on the team, at any site, at any time can run the tests

Wisdom is knowing when it is ok to bend or break the rules!

Megatest strives to make it straightforward to do things right but still possible to get the
job done when the rules must be bent or broken.

Dashboard/Test Control Panel

Files Tools

summary]| Runs [[Run summary]|[Run Control][Run Times|[testview

Y V162

ashboard
- browse runs
- filtering

* target
e runname

%

o state/status
- launch runs

est control panel

- xterm
- view log
- cleanrunexecute

filter test and items

release

iteration

a!|a!ﬁ

runname

7 toprun
testpatt_envvar
testpatt

test2
runconfig-tests
rollup
rerunclean
listruns-tests
itemwait
itemmap
fullrun

envvars
dependencies
chained-waiton

vi.62 v1.60 v160 v1.60 v1.60 v160 v1.60 v1.60 V160 v1.60
772 28 28 28 28 28 28 28 28 28

wwd1.5a wwdg.da wwd.6a 56036daSc4 ab348d3bd6 ab0d1e7633 29908b23ed 2bae638eOf c6cI21401e 27552d9089
[pass || Pass || Pass

[eass || eass | pass
PASS PASS PASS ﬁ

[eass || eass |
{ JLpass |

[pass || eass |

Lpass | L J S—

state/status filter

[warN [FaIL [cHeck [n/a [wavED [skip [DELETED [sTuck/peaD

e
1) compLETED [T} NOT_STARTED 7] RUNNING [") REMOTEHOSTSTART [LAUNCHED O KiLLED [KILLREQ [stuck

listruns-tests/

e testpattern =

Megatest Run Info Test Info Test Meta Data
release v1.62 Testname: listruns-tests Author: tyardeni
iteration 7172 Item path: owner: tyardeni
runname ww41.5a Current state: COMPLETED Reviewed:
run-id 69 Current status: PASS Tags: rerunclean
run-date 2016ww41.5 22:59 Test comment: Description:
Test id: 2070012
Test date: Ww41.5 23:06 Test preclean/rerun behavior

Remote host and Test Run Info
Hostname: Xena

Disk free: 70048920
CPU Load: 1.86

Run duration: 1m

8s

Logfile: chk-filt.heml
Top processid: 23010
Uname -a: Linux 4.4.0-38-generic #57-Ubuntu SMP Tue Sep 6 15:42:33 UTC 2016 x86_64 x86_64 GNU/Linux

Megatest Run Info
Launch Dashboard

Actions
View Log Start Xterm Run Test Clean Test CleanRunExecute Kill All Jobs Archive Test Close
Execute!
Set fields
Comment:
STATE: [cowpUERED) [hor starien [mumninG |(Remomenostsmant)(_ Launcweo | kileo [widReg][stuck][aRceiven
STATUS[PASS 1 WARN I FATL (| nia (L warven || SKIP J DELETED || STUCK/DEAD || ABORT
Steps | Test Data
Step Name Start End Status Duration Log File Comment
copy 23:06:11 23:06:13 0 2s
clean 23:06:13 23:06:17 0 4s clean.html
run-ex 23:06:117 23:06:51 0 345
run-filt 23:06:51 23:07:13 0 22s
chk-filt 23:07:13 23:07:17 0 4s chk-filt.html

") ABORT
) ARCHIVED

Terminology

target one or more “keys” separated by “/”, used to organize runs
hierarchically; examples include platform, release, architecture,
stage (e.g. development, final QA, alpha, beta) and so forth. E.g
target = x86/centos/dev where the keys are ARCHITECTURE,
OS, and RELEASE. A target is a context.

run a group of tests run under a single target and run name

iterated test a single test run multiple times with variables iterated over a
range of values

status the current status of this test given its state; PASS, FAIL, n/a

Architecture

- config files, static state, human input

- megatest.config
- runconfigs.config
- tests/<testname>/testconfig

- SQL database, dynamic state
- megatest.db

- Tools

- megatest (command line), dashboard (gui),
and logpro (log file analysis via rules),
refdb (text based data base)

Getting Help

+ Command line help:

megatest -h
or try: viewscreen “megatest -h |& less”

- The user manual:

megatest -manual

dashboard

tosh/optchicke

tosh/local

tosh

packages

tosh
hosts

'

— e e e e e e e e e e

tosh

groups

tosh

accounts

tosh IASS \
filter test and items hide
% |) pAsS”] FAIL] WARN | CHECK] WAIVED(| STUCK/DEAD] n/a
' RUNNING | COMPLETED(| INCOMPLETE] LAUNCHED | NOT_STARTED | KILLED(] DELETELC

— e e e e e e e e e e
— e e e e e e e e e e
— e e e e e e e e e e

=]
|\So_rt“ HideEmpI:y“ Refreshl .

Quit || Monitor v

Do live demo of dashboard here.

éa N
Controls
(debug,

run &

state/status
N 4

test control panel

Megatest Run Info Test Info Test Meta Data
sysname ubunktu Testname: runfirst Author: matt
fsname nfs Item path: b/2 owner: bob
datapath none Current state: COMPLETED Reviewed: 1/1/1965
runname w12.7.15.37_b Current status: PASS Tags: first,single meta data
run-id 1 Test commenkt: This Description:
Testid: 22 .
) : This test must be run before the other
~ runinfo " * o
 testinfo
Remote host and Test Run Info
Hostname: xena
Uname -a: Linux 3.2.0-38-generic-pae #61-Ubuntu SMP Tue Feb 19 12:39:51 UTC 2013 i686i386 GNU/Linux
Disk free: -2147483648.0 4
CPU Load: 8.0 0
Run duration: 49s remOte hOSt InfO
Lagfile: wasting_time.html
Adiions
View Log Start Xterm Run Test Clean Test Close
Execute!
Set Fields
Comment:| This
STATE: [COMPLETED J| NOT_STARTED [| RUNNING [REMOTEHOSTSTART || KILLED | KILLREQ |
GTATUS:[PASS J| WARN (| FAIL ([CHECK I nda I WATVED |
Test Steps Test Data
Stepname Start End Status Time egory Variable Value Expected Tol Status Units Type Commend
wasting_time 15:39:30 15:39:39 0 9.0s as dout 1.2 1.9 > fail Amps meas Commen:
var val exp comp status units type commen
bar 10.0 amA o o this 1
(i abl 1.2 T. 0.1 pass] i
) alb 2 A <= pass Amps O This 1
step records & Teéstdata - i v
L b bar | 1.2 1.9 > fail o0 0
) bla 1.2 1.9 = pass 0 0
' bra 1.2 ass silly stuff0 0 0
b rab 1000000000, 010000000000.01000000000.0Fail O 0
F 4 F

Do live demo of test control panel here.

Run Management

Launching runs

- command line: “megatest -run ...”

- test control panel: push “run” then
“execute”

Removing runs

- command line: “megatest -remove-runs ...
Archiving runs

- command line: “megatest -archive ...”

b2

note: all these commands require the use of additional selector
parameters such as -target and -runname

Task/Test Management

- Killing jobs

- In the gui set status to “KILLREQ” and the
job will be killed.

- Command line example:

megatest -set-state-status KILLREQ,FAIL -target ubuntu/nfs/none \
-runname w10.2a -testpatt %/% -state RUNNING,LAUNCHED

- Changing state and status of tests
- Use -set-state-status, see example above.

- Add “-rerun FAIL” to your launch command
line to force the re-run of failed jobs

Test Selectors

- -testpatt testpattern/itempattern
- wild card is “%”
% synonymous with %/%
%/ toplevel tests (no items)
- comma separate multiple patterns (OR)

%/,%/alb All toplevel + any items matching
al/a

Getting information

- -list-runs pattern
- lists runs with runname matching pattern.

- -extract-ods

- creates an open-document spreadsheet
- Miscellaneous queries

-list-disks

-list-targets

-list-db-targets

Config File Syntax

The config file syntax was designed to be:

- simple and forgiving to syntax mistakes
- easy to understand and trace where values originated
- expressive enough for complex needs.

Variables ABC 1 Variable “ABC” will have the value “1”

#{ } text substitutions #{shell Is $PWD} replace the #{ ... } with the output of the Is

$PWD command. Note that newlines are
replaced with spaces.

Config File Text Substitutions

NOTE: [] substitutions can be deferred by megatest and executed just
before launching a test but #{ } substitutions are done as each line is read.

#{shell command} replaced with output from command

#{scheme (schemecode)} replaced with the result of evaluating
(schemecode)

#{get section var} replaced with the value of var from
section

Creating a Megatest Area

- Required Config files

- megatest.config
- runconfigs.config

- Tests

- testconfig
- Can use the helper “wizards”

megatest -create-megatest-area
megatest -create-test <testname>

(demo of -create-megatest-area and -create-test)

Setup Megatest Area (Review)

Contfig files

- megatest.config

 Target A/B/C ...
- One or more “keys” (the “A”, “B” and “C”)

- Choose carefully! They cannot be
changed after your megatest.db is created

 links area (the link tree to all your tests)

e runs disk (can add more over time)
- Lowest usage disk used first
- Link tree symlinks point into run areas

- runconfigs.config
e can be empty initially

Required

[fields]
PLATFORM TEXT

oS TEXT

[setup]

Adjust max concurrent jobs to limit parallel jobs
max_concurrent_ jobs 50

This is your link path, best to set it and then not change it
linktree #{getenv MT RUN AREA HOME}/linktree

Job tools control how your jobs are launched
[jobtools]

useshell yes

launcher nbfake

You can override environment variables for all your tests here
[env-override]
EXAMPLE VAR example value

As you run more tests you may need to add additional disks
the names are arbitrary but must be unique

[disks]

diskO0 #{getenv MT RUN AREA HOME}/runs

Config Files

[default]
ALLTESTS see this variable

Your variables here are grouped by targets [SYSTEM/RELEASE]
[SYSTEM val/RELEASE vall
ANOTHERVAR only defined if target is SYSTEM val/RELEASE val

Example testconfig

Add additional steps here. Format is "stepname script"
[ezsteps]

stepl stepl.sh

step2 step2.sh

Test requirements are specified here
[requirements]

waiton setup

priority O

Iteration for your tests are controlled by the items section
[items]
COMPONENT parser datastore transport analyzer

[logpro]
stepl ;;
(expect:error in “LogFileBody” = 0 “No errors” #/err/i)

test meta is a section for storing additional data
on your test

[test meta]

author matt

owner matt

description An example test

tags tagone, tagtwo

reviewed never

Megatest Information

Main development site
http://www Kkiatoa.com/fossils/megatest
http://www kiatoa.com/fossils/logpro

Mirror
http://chiselapp.com/user/kiatoa/repository/megatest
http://chiselapp.com/user/kiatoa/repository/logpro

SourceForge Page

http://sourceforge.com/projects/megatest

http://www.kiatoa.com/fossils/megatest
http://www.kiatoa.com/fossils/logpro
http://chiselapp.com/user/kiatoa/repository/megatest
http://chiselapp.com/user/kiatoa/repository/logpro
http://sourceforge.com/projects/megatest

Backup

How it Works

remote host

megatest -execute

o) t

e«),o\x (system)
N test process
‘ megatest -step ... ‘

megatest -run
<l dashboard

T I

= d IO

megatest.db

(sqlite3)

A Day in The Life ...

test control panel

(in background)

run progress seen in xterm

Y4

ner: matt
fewed: 09/10/2011, by Matt

xena
normal
w12

4804fawful | pass ||

4.8.0.1/apropos

4.8.0.1/test”

48.0.1/"regex-ca [BASS |
chicken | PASS Il
4801 | pass |
480 | eass. |
— = filter test and items hide
z % PASS_| FAIL_| WARN_| CHECK | WAIVED_| STUCK/DEAD_| n/a
/mfs/matt/data/sysmaint/runs/xena/normal/ww12/chi
make: *** No targets specified and no makefile f¢ RUNNING | COMPLETED | INCOMPLETE | LAUNCHED! | NOT_STARNgL KILLED | DELETED]

cat install.sh >install Sort)| HideEmpty | Refresh

chmod a+x install .
You may need to add /mfs/pkgs/xena/xena/chicken/4 QUi Momt_or
file can be found in the current directory which should work for setting up to run chickendx

OGPRO' SUMMARY

Trigger: Chicken Build End FAIL, count=0

Trigger: Chicken Build Start FAIL, count=0

Trigger: Body 0K, count=1

Trigger: LogFileBodyStart OK, count=1

Expect: Error in Body FAIL, expected = 0 of ERROR, got 2

Expect: Warning in Body OK, expected = 0 of WARNING, got O

Expect: Ignore _gn Body OK, expected < 2 of Ignore warning on not found regex, got 0

Expect: Ignd in Body OK, expected < 99 of Ignore scheme files with error in name, got 0 dashboa rd

Expect: Iggf'y)’ in Body OK, expected < 99 of Ignore install-other-files error, got 0

Expect: g¥fgnore in Body OK, expected < 99 of Ignore (setup-error-handling), got 0

Expecs® Ignore in Body FAIL, expected = 1 of Ignore (D native window driver warning, got 0

Expfict: Ignore in Body 0K, expected < 99 of Ignore redefinition of imported wvalue bindings, got 0
Ignore in Body OK, expected < 99 of Ignore references to srfi-4-errors, got 0

ct: Ignore in Body OK, expected < 99 of Ignore references to type-errors, got 0

Ignore in Body OK, expected < 99 of Ignore references to check-errors, got 0
Ignore in Body OK, expected < 99 of Ignore HAVE_STRERROR, got 0

Writing a Test “checkspace”

- Write a test that checks for available space
- tests can “waliton” this test before running.

- Our test will use this simple script,
checkspace.sh:

Note: Files for this example can be found in
“example” dir in Megatest distribution

Writing a Test “checkspace”

- Commands to create test “checkspace”
- mkdir -p linktree runs tests/checkspace
- cd tests/checkspace
- vi checkspace.sh
- chmod a+x checkspace.sh
- Vi testconfig

Writing a test “checkspace”

Write a logpro file to analyze your results

|-- megatest.config
|-- megatest.db
|-- monitor.db
|-- runconfigs.config
“-- tests
“-- checkspace
|-- checkspace.logpro
|-- checkspace.sh
“-- testconfig

Runing the “checkspace” Test

Run your test

From the directory where “megatest.config”
exists run these commands:

dashboard &
megatest -runtests % -target x86/suse10 :runname w date +%V.%u’

X Megatest dashboard <2= IEI@]E
tl LLLLLLL 3 e
h SSSSSS
nnnnnn ruiE
] checkspace | | | | | | | |
oooooooooooo [| | [[| | [
ooooooooooo [| | [[| | [
ilter test and item hide
F | A PASS _IFAIL I WARM _I CHECK I WAIVMED _I STUCK/DEAD _Infa
SDPtl HideEmptgl Re-FPeshl I RUNWING _ICOMPLETED _I TMCOMPLETE _I LAUNWCHED _IWNOT_STARTED _IKILLED _IDELETED
Buit| Monitor| [

The “checkspace” Test Directories

-- linktree
*-- x86
*-- susel10
- w13.1
*-- checkspace
|-- opt
| *-- 100000 -> /nfs/ch/disks/ch_unienv_disk005/ga_mrwellan/interim/src/megatest/example/runs/x86/suse10/w13.1/checkspace//opt/100000
|-- testdat.db
-- tmp
*-- 1000000 -> /nfs/ch/disks/ch_unienv_disk005/ga_mrwellan/interim/src/megatest/example/runs/x86/suse10/w13.1/checkspace//tmp/1000000
-- runs
*-- x86
*-- susel10
- wi13.1
*-- checkspace
opt
*-- 100000

|-- NBFAKE-2013WW13.1_09:57:48
|-- checkspace.html
|-- checkspace.log
|-- checkspace.logpro
|-- checkspace.sh
|-- megatest.csh
|-- megatest.sh
|-- mt_launch.log
|-- testconfig
*-- testdat.db
-- tmp
*-- 1000000
- NBFAKE-2013WW13.1_09:57:49
- checkspace.html
- checkspace.log
- checkspace.logpro
- checkspace.sh
- megatest.csh
- megatest.sh
- mt_launch.log
-- testconfig
“-- testdat.db

Setup for Run “Flavors™

- runconfigs.config

[default]
VARS here are inherited by all runs

[some/target]
VARS here inherited in some/target runs

- NB// the last specified definition overrides prior
definitions.

Setup Tests/Tasks

- A test or task is a set of scripts and data
designed to do something or test something.

- Create in tests directory

- Test name limitations

- No spaces or special characters
- [a-zA-Z0-9] and “-” are ok.

The testcontig file [setup]

- [setup]

runscript scriptname.sh

- The script must exist in the testconfig
directory and be executable

- Output from the script is NOT captured by
Megatest directly

- The script can be an executable or written
In any scripting language

The testconfig file [ezsteps]

- |ezsteps]
stepl scriptl.sh

- The script “script1.sh” will be executed and
Its output redirected to the file step1.log.

- If a logpro file step1.logpro exists it will be
used to process the logfile stepT1name.log
and generate the PASS/FAIL/WARN status.

The testconfig file [items]

[items]
VARI valuell valuel2 valuel3 ...

VAR2 value21 value22 value23 ...

- This will iterate this test with all possible
combinations of VAR1 and VAR2 values.

- Results:

vda
vda
vda

uer
uer
12/va

ue

1/va
1/va

ue2l, va
ue23, va
ue22, va

ue
12/va
12/va

ue
ue

1/va

ue2l2,
uel,

uels ...

The testconfig file [itemstable]

[itemstable]
VAR1 wvaluell wvaluel2 ...

VAR2 value2l wvalue22 ...

- This will iterate over the test with only
aligned value combinations.

- Result:

- valuel1/value21, valuei12/value22 ...

NOTE: You can combine items and itemstable but they work independently and the
result may not be what you expect.

The testcontig file [requirements]

[requirements]

waiton <testname ... >

o this test will not be launched until the listed
tests are COMPLETED and PASS, WAIVE
or SKIP.

Jjobgroup <groupname>

e this test will be added to the named job
group and the relevant max concurrent jobs
will apply

mode toplevel

« this test will proceed once all it waiton tests
are completed with any status.

The testconfig file[test meta]

- author matt

- owner bob

- description The description can run to multiple
lines but subsequent lines must be indented
with spaces.

- tags first,single

- reviewed 09/10/2011, by Matt

Megatest Calls in Tests

- -step stepname

- mark the start or end of a step

+ -test-status

set the state and status of a test
- -setlog logtname

set the path/filename to the final log
relative to the test directory.

- -set-toplog loginame
set the log for a series of iterated tests

Other Megatest calls

+ -summarize-items

for an itemized test create a summary html
(usually called automatically)

* -Im comment

Insert a comment for this test, can be used
with any of the above calls

- -test-files or -test-paths

Use the database to search for files or
paths in the test run area

Example Megatest in-test calls

-step

SMT MEGATEST -step stepl :state start :status
running -setlog stepl.html

-test-status

(Mark a test as completed and trigger a rollup to the parent
test of overall status)

SMT MEGATEST -test-status :state COMPLETED :status
AUTO

-test-path

export EZFAILPATH2=" SMT MEGATEST -test-paths -target
SMT TARGET :runname SMT RUNNAME -testpatt
runfirst/a%’

Environment Variables

MT_MEGATEST Full path to megatest executable

MT_TEST_NAME The name of the current test

MT_RUN_AREA HOME The base area for this regression

MT_DEBUG_MODE Used to propogate debug mode to
underlying megatest calls.

Additional Features

- Run locking

- Prevents removing or adding tests to a run
-lock
-unlock

Logpro

- Logpro syntax

Logpro uses scheme calls directly and the full
power of scheme is available. However 99% of
logpro rule files will not need anything other than

the base logpro rules.

- Documentation at: http://www .kiatoa.com/fossils/logpro

Rule
expect:error
expect:ignore
expect:warning
expect:required
expect:waive
expect.value
trigger

section

hook:add

Example

(expect:error in “Logf” = 0 “Err desc” #/err1/i)
(expect:ignore in “Logf’ < 10 “Err desc” #/err2/i)
(expect:warning in “Logf” = 0 “Desc” #/warn1/i)
(expect:required in “Logf” = 1 “Desc” #/reqrd/i)
(expect:waive in “Logf” = 0 “Err desc” #/err3/i)
(expect:value in “Logf” 10 1 “Err desc” #/(\d+)/i)
(trigger “start” #/Start logfile/)

(section “Logf” “start” “end”)

(hook:add “err1” “err1.pl #{msg}”’)

Purpose

Flags errors matching the pattern err1

Ignore errors matching the pattern err2

Lines matching pattern warn1 flagged as warning
Line matching pattern reqrd must exit in log file
Waive error matching pattern err3

The number matched must be 10 +/- 1

Set trigger “start” on line with “Start logfile” string.
Section Logf starts at trigger start, ends at end

On err1 call the err1.pl script with msg as param

http://www.kiatoa.com/fossils/logpro

Advance Logpro Usage

- Data collection

- Capturing with logpro
- Rolling up with Megatest

Waiver Propagation

X Megatest dashboard <4=

This test failed and was manually
set to WAIVED in the next run

Yshame IE ubuntu ubuntu ubuntu
shame w nfs nfs nfs
Etapath F ok ok ok

unnEme 13 wiB, 2,08, 44_h wiB,2,08,33_h wiE,2,08,22 kb
This test uses diff and logpro to prianity s pass | Pess | pess |
e g priority_4 PASS PASS PASS
determine if ok to propagate WAIVED o ' ' |
iority_3 FHSS | FHSS | FAlL]
] eabver 1 i - Kemaaren pridgity_2 PASS | FHSS | FHSS |
bk B s S ok SeR s S S prioriNg_10_waiton_1 PASS | Pass | Pass |
1000 00|=XAG/as . - -

— priority_ FHSS | FESS | FESS |

EF Location: | |##)/nts/chidisksich_unieny_diskD0Sqa_mry finkerim/sre/ Amp/mi_runs/ubuniunfsin| ¥ | |
- priority_1 PASS | PASS | PASS |

LOGPRO RESULTS Summary is here

(processed by logpro version 1.07, tool details at logpro)

HEVERTLIN
4304428 mahual _example
< eclogin-errors.labramow.14523].CIEFIF‘I:I r‘E-quir‘E-d fail

431a431,432
> eclogin-errors.labramow.18281
> eclogin-errors.labramow. 2662

lineitem_pass

433d433

< eclogin-srrors.labramow. 32764 lineitem_fail

458,459d457

< eclogin-srrors.pratikbx.15547 ezlog_warh

< eclogin-errors.pratikbx.18077

4602458, 460 ezlog_pass

> eclogin-errors.pratikbx.23458 _{

SpoopoginTETTOTS . pratiIDY. 25266 ezlog_fail_then_pasz= FRES FRSS FRSS

LOGFRO SUMMARY:
Trigger: LogFileBodyStart OK, count=1 eZ_pass

FESS | FHSS | FHSS

< he486.mxxdem.run.log.1365521228 EZlDE_Fail WAIVED I WAIVED I —

Expect: Warning in Body OK, expectsd = 0 of Any warning, got 0

ez_fail

The WAIVED status was propagated/ - Pass | pess | pass |

because the criteria set in testconfig all_taplevel pss | ass | Pess |

were all met

Waiver Propagation

waiver name

waiver rule type

logpro file input glob)
N | | . | | file to apply rule
matching file(s) will be diff'd with previous run and logpro applied

if PASS or WARN result from logpro then WAIVER state is set

#

[waivers]

waiver 1 logpro lookittmp.log example rUIeS

[waiver rules]

This builtin rule is the default if there is no <waivername>.logpro file

diff diff %filel% %file2%

This builtin rule is applied if a <waivername>.logpro file exists

logpro diff %filel% %file2% | logpro %waivername%.logpro %waivername%.html

Direct Access to Megatest Functions

- -repl

- This will start a read-eval-print loop allowing you
to directly call Megatest calls.

- -load test.scm

- This will load the scheme source code and
exectute It in the Megatest context.

New Features in v1.55

- Task/Test search path

- organize your tests in different directories
- reuse tests from other flows

- Automatic SKIP handling
- Crontab friendly runs (can overlap)

- “itemmatch” mode

- Iterated tests block only on previous same-
named iteration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

